667中文网 > 网络其他电子书 > 纳什均衡与博弈论 >

第25章

纳什均衡与博弈论-第25章

小说: 纳什均衡与博弈论 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



概率论也是不可或缺的,就像阿道夫·凯特勒在大约两百年前说的一样。因此,我敢打赌,博弈论和概率的密切联系是博弈论之所以被广泛地应用在这么多不同科学领域的原因。并且,毫无疑问,正是博弈论的这个方面使其居于一个如此战略性的位置,作为一种原动力促使社会学与统计物理学融合形成社会物理学——有些像阿西莫夫的心理史学或自然法典。

  到目前为止,策划运用社会物理学来描述社会的尝试绝大多数并不以博弈论为基础,而是以统计物理学为基础的(如阿西莫夫的小说的心理史学)。但是博弈论中混合策略/概率方程式表现出其与统计物理学中概率分布的惊人相似。事实上,为达到纳什均衡的博弈参与者所使用的混合策略正是概率分布,准确地说,正如统计物理学里定量表示气体中分子的分布情况。

  这个认识推出了一个非凡的结论——即,从某种意义上说,博弈论和统计物理学是互相的他我。意即,它们能够用相同的数学语言来表述。更确切地说,你不得不承认博弈论中某些模型与统计物理学中一些特殊公式在数学上是一致的,且其中还存在深层次的内在联系。只不过,几乎很少人意识到这一点。

  第一节 统计学和博弈

  然而,如果你全面地检索研究文献,你将会从少数已经开始研究博弈论…统计物理学关系的科学家那发现一些论文。其中,有一位名叫大卫·沃尔波特的物理数学家,供职于美国国家航空航天局的加州艾姆斯研究中心。

  沃尔波特是富有创造性思维的思想家之一,拒绝被常规的科学模式所禁锢。他顺着无定型边缘分离(或结合)物理学、数学、计算机科学和复杂性理论的方向,追寻着自己的直觉与兴趣。我第一次遇见他是在20世纪90年代初,那时他在圣达菲学院做跨学科科学的前沿探索,我们就记忆的本质和可计算性的限制等问题进行了讨论。

  2004年早期,当我留意到他在环球网络物理学版的预定本上发表的一篇论文时,沃尔波特的名字再次进入我的眼帘。他的文章论述了如何在博弈论与统计物理学之间建立一种联系(倘若顺便提一句,这也是我写这本书的重要灵感之一)。事实上,正如沃尔波特在文章中所展示的,首先引起我对这个问题的注意的是,一种特殊的研究统计物理学的方法所涉及的数学方法和研究非合作博弈所使用的数学方法是相同的。

  沃尔波特的文章提到,统计物理学中描述微粒都会尽量最小化它们的聚集能,就像参加赌博的人都会为了达到纳什均衡而试图最大化自己的效用一样。赌徒们为达到纳什均衡所使用的混合策略正是概率分布,就像统计物理学中描述的微粒间的能量分布。

  在阅读了沃尔波特的文章后,就此问题我给他写了封信,并于几个月后在波士顿郊外的一个复杂性研讨会上与他讨论,当时他于会中陈述一些相关的研究工作。当我问及是什么促使他在博弈论和统计物理学之间建立联系的,他回答说是:拒绝。

  沃尔波特一直致力于集合机器学习系统的研究,这个系统可以在各台计算机、机器人,或其他自动设备,各自具有自身个体目标的情况下,相互协调地为了整个系统达成一个目标。这个想法正是找寻一条途径在各个“因子”之间建立关联,使它们的集合行为能服务于总体目标。他注意到,他的研究与《物理评论快报》(Physical Review Letters)上发表的一篇关于纳米计算机的论文的颇为相似。因此,沃尔波特将他的其中一篇论文寄给了那个期刊。

  “事实上,编辑回信道‘呃,坦白地说,你的工作不是物理学,’”沃尔波特说,“而且我很不高兴”。所以他开始思考物理学和博弈论。毕竟,一群有着各自走向的因子,但却追寻一个共同目标,这与博弈中寻求纳什均衡的参与者颇为相似。他回忆道:“之后我说,那么我将尽全力理解这其中的奥秘,并用物理系统的语言来进行完整的诠释。”

  博弈涉及的是参与者;物理学涉及的是分子。于是沃尔波特就研究能够体现参与者策略的数学方法,就像物理学中体现分子动态一样。所有参与者策略的混合体就像统计物理学中通常描述的所有原子动态的集合。他提出的公式,在给定对参与者的有限了解的情况下,可允许你计算出在博弈中任何个体参与者策略的真实集合的接近的近似值。你可以用同样的方法来计算出所有博弈参与者的混合策略。基本上,沃尔波特展示了统计物理学中的数学方法如何最终与有着有限理性参与者的博弈中所使用的数学方法是相同的。

  “那些论题根本上是同一的,”他在他的文章中写道,“这个证明增加了将一些统计物理学中已发展得很强大的数学技术转移到分析非合作博弈理论中的潜能。”

  沃尔波特的数学图谋植根于“最大熵”理论(maximum entropy,或者叫“maxent”),一个联系标准统计物理学与信息理论的原理,用于量化发送与收到讯息的数学。最大熵的理论是由特立独行的物理学家艾德文·杰尼斯(Edwin Jaynes)在他于1957年发表的文章中创立的,此理论被很多物理学家所接受,但同时也被其他很多物理学家所忽视。当时,沃尔波特称杰尼斯的工作“多么光辉而美丽”,并且认为这才是科学家们必须为了“将博弈论带入21世纪”所需的东西。

  杰尼斯原理吸引人的同时也使人产生挫败感。它看起来本质上简单,然而却隐含着错综复杂的关系。它与物理概念——熵有着紧密的联系,但仍有着细微的不同。无论如何,它的解释需要对概率论与信息理论的本质进行简要的探寻,也就是将博弈论与统计物理学结合到一起的本质联系。

  第二节 概率和信息

  几个世纪以来,科学家与数学家都在争论概率的含义。即便今天,仍然存在着不同学派的概率思想,通常简单表示为“客观派”与“主观派”。但是那些标签隐藏了次论据与技术上的细微的差别,使概率论成为一个数学与自然科学中最充满争议和困惑的领域。

  多少有点令人吃惊,概率论的确是基于自然科学的基础,扮演着分析实验数据和理论检验过程中的核心角色。这就是科学所要做的一切。你会认为到如今他们已把问题全部解决。但是,建立科学的秩序有些类似为伊拉克建立一套宪法。研究科学的原理和方法纷繁复杂。事实上,科学(不像数学)不是建立在不可约规则的坚实基础上的。科学就像语法。语法是由使用该语言的本族人在创造词汇和联系词汇时发展出来的规律。一个真正的语法学家不会告诉人们他们应该怎么说,而是整理出人们实际上是如何说的。科学并不是烹调书,提供揭露自然奥秘的菜谱;科学源于方法的集合,成功诠释自然。这就是为什么科学不完全是实验,也不完全是理论,而是两者相互影响的复合体。

  不过,归根结底,理论和实验必须紧密结合在一起,如果科学家对于自然的构想是有意义且有用的。那么在大多数科学领域里你需要数学来验证它们的结合。概率论就是实施检验的工具(对于如何实施检验的不同想法会导致不同的概率概念)。

  在麦克斯韦之前,科学中的概率论主要局限于定量计算诸如测量错误等情况。拉普拉斯和其他学者展示了一种方法来评估在一个确切的置信度下,你的测量值和真实值之间相差多远。拉普拉斯自己运用此方法测量了土星的质量,并推断出真实的土星质量会偏离当前的测量值超过1%的情况只有一万一千分之一(1/11000)的发生概率(而结果是,当今最好的测量方法与拉普拉斯时代最好的方法精确度只相差0。6%)。概率论已经发展成为一个进行评估的相当精确的方法。

  然而,概率本身究竟意味着什么?如果你问那些应该懂的人,你会得到不同的答案。客观主义派坚持认为,一个事件发生的概率是该事件本身的性质。你观察所有情况中事件发生的片断,并籍此测量出它的客观概率。另一方面,主观派的观点认为,概率是一种对于某事件可能会怎么发生的信念。主观派主张测量某事件多久发生一次得到一个频率,而非概率。

  探究这两种论点相对优劣性的辩论并无意义。一些书籍却致力于这些争论,这与博弈论相当无关。事实是,今天流行的观点,至少是在物理学家中,是主观派方法包含了对科学数据进行合理评估的要素。

  主观派统计学经常臣服在贝叶斯的名下。托马斯·贝叶斯是一名英国牧师,于1763年(在他去世后两年)发表的一篇文章中探讨了研究自然的方法。今天被人们熟知的贝叶斯定律的公式就是实践主观派统计学方法的核心之所在(尽管精确的定律实际上是拉普拉斯创立的)。无论如何,贝叶斯的观点在今天都被发扬光大,而且也有很多关于它应该如何被理解和应用的争论(也许是因为,毕竟它是主观的)。

  但是,从实践的观点来看,客观派和主观派概率论的数学方法在任何基础层面上并没有实质性的区别,只是在理解上有差异。正如杰尼斯在半个世纪前指出的,只是在一些情况下使用其中一种而非另一种是因为感觉方便,或更合适些。

  第三节 信息和无知

  在他1957年的文章中,杰尼斯在概率的辩论中支持了主观派的观点。他认为,这两种观点,主观派和客观派,物理学都需要,但是对于一些类型的问题只有主观派方法能解决。

  他争辩道,即便当你对感兴趣的体系一无所知、无从下手的时候,主观派 的方法仍然适用。如果给你一个装满了微粒的盒子,而你对它们毫不知情——不知道它们的质量,不知道它们的组成,也不知道它们的内部结构——你对它们的状态也不甚了解。你知道很多物理定律,但是你不知道对于这个体系该使用哪个定律。换言之,你对于这些微粒的状态的无知已经到达了顶点。

  创立概率论的早期开拓者,如雅格布·伯努利和拉普拉斯,认为,在这种情况下,你必须简单地假设所有的可能性出现的概率是相同的——直到你有理由去做不同的假设。那么,这也许有助于计算,但是假设所有可能性出现概率相同有确实的(理论)基础吗?除了些可以肯定的情况,很明显两种可能性发生概率相同(像硬币有两面一样完美的平衡),杰尼斯说,很多其他的假设可能被同样证明是合理的(或者如他惯称的,任何其他的假设都是同样主观的)。

  然而,借助了在当时来说相当新的信息理论,杰尼斯发现了一种应对这种情形的方法,那个理论正是贝尔实验室的克劳德·夏农( Claude Shannon)创立的。夏农对如何量化通信很感兴趣,特别是发送信息;通过这种定量方式可以帮助工程师们找到使通信更有效率的办法(毕竟,他供职于一家电信公司)。他发现如果你将通信视作对不确定性的降低过程,那么数学方法就可以很精确地量化信息。在通信开始前,收到任何信息都是可能的,因此不确定性很高;当信息确实被接收后,不确定性就降低了。

  夏农将这种数学方法广泛应用到任何一个信号传导系统中,从摩斯密码到烟雾信号。但是假设,例如你所想要做的就是发送给某人一条单字信息(这个字是从一本标准未删节的字典里选出的,大概字典里收录了50万字)。如果你告诉接收者这个信息中的单字来自该字典的前半部分,那么你就将这个字出现的可能性从50万字减少到了25万字。换言之,你将不确定性减半(这碰巧与一比特信息相符)。

  基于信息降低不确定性的想法,夏农通过它来展示如何量化所有的通信。他发现了一个精确衡量不确定性的量的公式——不确定性越大,量就越大。夏农称其为熵,一个有意与统计物理学及热力学里使用的物理专业术语熵类似的概念。

  物理学家使用的熵是用来度量物理体系混乱度。假设你有一个房间,里面包括分隔开的两个隔间,而且你在左边的隔间里放了100亿个氧分子,而在右边隔间里放了 400亿的氮分子。然后你移除隔间之间的分隔物。这些分子就会全部迅速混合到一起——更加无序——所以这个体系的熵就增加了。但是其他一些事也会随之发生——你不再知道这些分子在哪了。你对它们位置的无知随着熵的增大而增加。夏农展示出他计算通信中熵的公式——作为对无知或不确定性的量度——和统计物理学中描述微粒集合体中增加熵的公式完全如出一辙。

  熵,换言之,与无知几乎等同。熵也是不确定性的同义词。信息理论提供了一种在概率分布中计算不确定性的新的精确的方法。

  因此,当你对于你要研究的体系中的概率一无所知的时候,这里有一条线索指引你该如何去做。选择一个使熵值最大的概率分布!最大熵意味着最大的无知,而且如果你什么都不知道,无知就被限定为最大。假设出最大熵/无知不仅仅是假设;它是对你所处情况的真实陈述。

  杰尼斯提出,这个最大无知的概念应该被提升到作为科学地描述任何事物的基本准则的层面。以他的观点,统计物理学本身便成为对于一个体系进行统计推论的系统。通过使用最大熵的方法,你仍可以使用所有统计物理学提供的计算规则,而无需在基本物理学方面假设任何前提。

  特别地,你现在能够证明这个观念,即所有的可能性出现的概率都是等同的。整体思想为,没有任何一种概率(只要是遵守物理定律的)会被排除。你所获得的信息中没有被明确排除的任何情况都将被视为存在发生的可 能(在标准的统计物理学中,这种特征是无需证据而简单地被假设出的——整体的概率分布基于所有的分子均遵循各自的可能运动状态的概念)。而且,如果你一无所知,你不能说任何一个

返回目录 上一页 下一页 回到顶部 2 5

你可能喜欢的